Prerequisites
- Basic understanding of programming concepts ๐
- Python installation (3.8+) ๐
- VS Code or preferred IDE ๐ป
What you'll learn
- Understand the concept fundamentals ๐ฏ
- Apply the concept in real projects ๐๏ธ
- Debug common issues ๐
- Write clean, Pythonic code โจ
๐ฏ Introduction
Welcome to this exciting tutorial on A/B Testing and Statistical Analysis! ๐ Have you ever wondered how companies decide whether a new feature or design change actually improves user experience? Thatโs where A/B testing comes in!
Youโll discover how A/B testing can transform your data-driven decision making. Whether youโre optimizing website conversions ๐, improving app features ๐ฑ, or testing marketing campaigns ๐, understanding A/B testing is essential for making confident business decisions backed by data.
By the end of this tutorial, youโll feel confident running your own A/B tests and interpreting the results like a pro! Letโs dive in! ๐โโ๏ธ
๐ Understanding A/B Testing
๐ค What is A/B Testing?
A/B testing is like being a scientist in the business world ๐งช. Think of it as running controlled experiments where you show different versions of something to different groups and measure which performs better.
In Python terms, A/B testing involves statistical analysis to determine if differences between two groups are meaningful or just random chance. This means you can:
- โจ Make data-driven decisions with confidence
- ๐ Optimize user experiences based on evidence
- ๐ก๏ธ Avoid costly mistakes by testing first
๐ก Why Use A/B Testing?
Hereโs why data scientists and businesses love A/B testing:
- Statistical Rigor ๐: Make decisions based on math, not gut feelings
- Risk Reduction ๐ป: Test changes on small groups before full rollout
- Clear Insights ๐: Know exactly what works and what doesnโt
- Continuous Improvement ๐ง: Keep optimizing based on user behavior
Real-world example: Imagine testing two checkout button colors on an e-commerce site ๐. With A/B testing, you can prove which color actually increases sales!
๐ง Basic Syntax and Usage
๐ Simple Example
Letโs start with a friendly example:
# ๐ Hello, A/B Testing!
import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
# ๐จ Creating sample A/B test data
np.random.seed(42) # For reproducibility
# ๐ฏ Group A (Control) - Original design
group_a_conversions = np.random.binomial(n=1, p=0.10, size=1000) # 10% conversion rate
group_a_df = pd.DataFrame({
'group': 'A',
'converted': group_a_conversions
})
# ๐ Group B (Treatment) - New design
group_b_conversions = np.random.binomial(n=1, p=0.12, size=1000) # 12% conversion rate
group_b_df = pd.DataFrame({
'group': 'B',
'converted': group_b_conversions
})
# ๐ Combine the data
ab_test_data = pd.concat([group_a_df, group_b_df])
print("A/B Test Data Ready! ๐")
๐ก Explanation: Notice how we simulate two groups with slightly different conversion rates. This is the foundation of A/B testing!
๐ฏ Common Patterns
Here are patterns youโll use daily:
# ๐๏ธ Pattern 1: Calculate conversion rates
def calculate_conversion_rate(data, group):
"""Calculate conversion rate for a specific group ๐"""
group_data = data[data['group'] == group]
conversion_rate = group_data['converted'].mean()
return conversion_rate
# ๐จ Pattern 2: Perform statistical test
def perform_ab_test(data):
"""Run statistical significance test ๐งช"""
group_a = data[data['group'] == 'A']['converted']
group_b = data[data['group'] == 'B']['converted']
# Chi-square test for proportions
stat, p_value = stats.chi2_contingency([
[group_a.sum(), len(group_a) - group_a.sum()],
[group_b.sum(), len(group_b) - group_b.sum()]
])[:2]
return p_value
# ๐ Pattern 3: Visualize results
def plot_ab_results(data):
"""Create beautiful visualizations ๐จ"""
conversion_rates = data.groupby('group')['converted'].agg(['mean', 'count'])
plt.figure(figsize=(10, 6))
bars = plt.bar(conversion_rates.index, conversion_rates['mean'])
bars[0].set_color('lightblue') # Control
bars[1].set_color('lightgreen') # Treatment
plt.title('A/B Test Results ๐', fontsize=16)
plt.ylabel('Conversion Rate ๐')
plt.ylim(0, 0.15)
# Add percentage labels
for i, bar in enumerate(bars):
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.1%}', ha='center', va='bottom')
plt.show()
๐ก Practical Examples
๐ Example 1: E-commerce Button Test
Letโs build something real:
# ๐๏ธ E-commerce A/B test scenario
class EcommerceABTest:
def __init__(self, name):
self.name = name
self.results = {'A': [], 'B': []}
# ๐ Simulate user interactions
def run_experiment(self, days=30, daily_visitors=1000):
"""Simulate a 30-day A/B test ๐
"""
print(f"๐ Starting {self.name} experiment!")
for day in range(days):
# Split traffic 50/50
visitors_per_group = daily_visitors // 2
# Group A: Blue "Buy Now" button (baseline 10% CTR)
daily_conversions_a = np.random.binomial(
n=visitors_per_group,
p=0.10 + np.random.normal(0, 0.01) # Add daily variance
)
# Group B: Green "Buy Now" button (testing 12% CTR)
daily_conversions_b = np.random.binomial(
n=visitors_per_group,
p=0.12 + np.random.normal(0, 0.01)
)
self.results['A'].append({
'day': day + 1,
'visitors': visitors_per_group,
'conversions': daily_conversions_a
})
self.results['B'].append({
'day': day + 1,
'visitors': visitors_per_group,
'conversions': daily_conversions_b
})
print(f"โ
Experiment complete! Ran for {days} days")
# ๐ Analyze results
def analyze_results(self):
"""Calculate statistics and significance ๐งช"""
# Convert to DataFrames
df_a = pd.DataFrame(self.results['A'])
df_b = pd.DataFrame(self.results['B'])
# Calculate overall metrics
total_visitors_a = df_a['visitors'].sum()
total_conversions_a = df_a['conversions'].sum()
conversion_rate_a = total_conversions_a / total_visitors_a
total_visitors_b = df_b['visitors'].sum()
total_conversions_b = df_b['conversions'].sum()
conversion_rate_b = total_conversions_b / total_visitors_b
# Statistical significance test
chi2, p_value = stats.chi2_contingency([
[total_conversions_a, total_visitors_a - total_conversions_a],
[total_conversions_b, total_visitors_b - total_conversions_b]
])[:2]
# Calculate lift
lift = (conversion_rate_b - conversion_rate_a) / conversion_rate_a * 100
# Pretty print results
print("\n๐ A/B Test Results Dashboard")
print("=" * 50)
print(f"๐ต Group A (Blue Button):")
print(f" Visitors: {total_visitors_a:,}")
print(f" Conversions: {total_conversions_a:,}")
print(f" Conversion Rate: {conversion_rate_a:.2%}")
print(f"\n๐ข Group B (Green Button):")
print(f" Visitors: {total_visitors_b:,}")
print(f" Conversions: {total_conversions_b:,}")
print(f" Conversion Rate: {conversion_rate_b:.2%}")
print(f"\n๐ Lift: {lift:+.1f}%")
print(f"๐ P-value: {p_value:.4f}")
if p_value < 0.05:
print(f"โ
Result is statistically significant! ๐")
if lift > 0:
print(f"๐ Group B performs better!")
else:
print(f"๐ต Group A performs better!")
else:
print(f"โ ๏ธ No significant difference detected")
return {
'conversion_rate_a': conversion_rate_a,
'conversion_rate_b': conversion_rate_b,
'lift': lift,
'p_value': p_value,
'significant': p_value < 0.05
}
# ๐ฎ Let's run it!
button_test = EcommerceABTest("Button Color Test")
button_test.run_experiment(days=30, daily_visitors=2000)
results = button_test.analyze_results()
๐ฏ Try it yourself: Add a confidence interval calculation and sample size calculator!
๐ฎ Example 2: App Feature Testing
Letโs make it fun with mobile app testing:
# ๐ Mobile app feature A/B test
class MobileAppABTest:
def __init__(self):
self.metrics = {
'retention': {'A': [], 'B': []},
'engagement': {'A': [], 'B': []},
'revenue': {'A': [], 'B': []}
}
# ๐ฎ Simulate user behavior
def simulate_users(self, n_users=5000):
"""Generate realistic user data ๐ฅ"""
print("๐ฎ Simulating user behavior...")
# Split users into groups
users_per_group = n_users // 2
# Group A: Original app experience
for i in range(users_per_group):
# 7-day retention (60% baseline)
retained = np.random.random() < 0.60
self.metrics['retention']['A'].append(retained)
# Daily sessions (mean=3)
sessions = np.random.poisson(3)
self.metrics['engagement']['A'].append(sessions)
# Revenue per user ($0-10, 20% paying users)
if np.random.random() < 0.20:
revenue = np.random.exponential(5)
else:
revenue = 0
self.metrics['revenue']['A'].append(revenue)
# Group B: New gamification features
for i in range(users_per_group):
# 7-day retention (68% with gamification)
retained = np.random.random() < 0.68
self.metrics['retention']['B'].append(retained)
# Daily sessions (mean=4 with gamification)
sessions = np.random.poisson(4)
self.metrics['engagement']['B'].append(sessions)
# Revenue per user (25% paying users with gamification)
if np.random.random() < 0.25:
revenue = np.random.exponential(6)
else:
revenue = 0
self.metrics['revenue']['B'].append(revenue)
print("โ
User simulation complete!")
# ๐ Multi-metric analysis
def analyze_all_metrics(self):
"""Analyze multiple metrics simultaneously ๐"""
results = {}
print("\n๐ฏ Multi-Metric A/B Test Analysis")
print("=" * 60)
for metric_name, metric_data in self.metrics.items():
group_a = np.array(metric_data['A'])
group_b = np.array(metric_data['B'])
if metric_name == 'retention':
# Binary metric (proportion test)
stat, p_value = stats.chi2_contingency([
[group_a.sum(), len(group_a) - group_a.sum()],
[group_b.sum(), len(group_b) - group_b.sum()]
])[:2]
mean_a = group_a.mean()
mean_b = group_b.mean()
else:
# Continuous metric (t-test)
stat, p_value = stats.ttest_ind(group_a, group_b)
mean_a = group_a.mean()
mean_b = group_b.mean()
lift = (mean_b - mean_a) / mean_a * 100 if mean_a > 0 else 0
results[metric_name] = {
'mean_a': mean_a,
'mean_b': mean_b,
'lift': lift,
'p_value': p_value,
'significant': p_value < 0.05
}
# Pretty print
emoji_map = {
'retention': '๐',
'engagement': '๐ซ',
'revenue': '๐ฐ'
}
print(f"\n{emoji_map.get(metric_name, '๐')} {metric_name.upper()}")
print(f" Group A: {mean_a:.3f}")
print(f" Group B: {mean_b:.3f}")
print(f" Lift: {lift:+.1f}%")
print(f" P-value: {p_value:.4f}")
print(f" Significant: {'โ
Yes' if p_value < 0.05 else 'โ No'}")
return results
# ๐จ Visualize all metrics
def plot_results(self):
"""Create comprehensive visualization ๐"""
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
metrics_info = [
('retention', '7-Day Retention Rate', '๐'),
('engagement', 'Avg Daily Sessions', '๐ซ'),
('revenue', 'Revenue per User ($)', '๐ฐ')
]
for idx, (metric, title, emoji) in enumerate(metrics_info):
ax = axes[idx]
# Calculate means
mean_a = np.mean(self.metrics[metric]['A'])
mean_b = np.mean(self.metrics[metric]['B'])
# Create bar plot
bars = ax.bar(['Group A', 'Group B'], [mean_a, mean_b])
bars[0].set_color('skyblue')
bars[1].set_color('lightcoral')
# Add value labels
for bar in bars:
height = bar.get_height()
if metric == 'retention':
label = f'{height:.1%}'
elif metric == 'revenue':
label = f'${height:.2f}'
else:
label = f'{height:.1f}'
ax.text(bar.get_x() + bar.get_width()/2., height,
label, ha='center', va='bottom')
ax.set_title(f'{emoji} {title}')
ax.set_ylim(0, max(mean_a, mean_b) * 1.2)
plt.suptitle('Mobile App A/B Test Results ๐', fontsize=16)
plt.tight_layout()
plt.show()
# ๐ฎ Run the mobile app test!
app_test = MobileAppABTest()
app_test.simulate_users(n_users=10000)
app_results = app_test.analyze_all_metrics()
app_test.plot_results()
๐ Advanced Concepts
๐งโโ๏ธ Advanced Topic 1: Bayesian A/B Testing
When youโre ready to level up, try Bayesian methods:
# ๐ฏ Bayesian A/B testing approach
from scipy.stats import beta
class BayesianABTest:
def __init__(self, alpha_prior=1, beta_prior=1):
"""Initialize with prior beliefs ๐ง """
self.alpha_prior = alpha_prior
self.beta_prior = beta_prior
def analyze_bayesian(self, successes_a, trials_a, successes_b, trials_b):
"""Perform Bayesian analysis ๐ฎ"""
# Update posteriors
alpha_a = self.alpha_prior + successes_a
beta_a = self.beta_prior + trials_a - successes_a
alpha_b = self.alpha_prior + successes_b
beta_b = self.beta_prior + trials_b - successes_b
# Sample from posteriors
samples_a = beta.rvs(alpha_a, beta_a, size=10000)
samples_b = beta.rvs(alpha_b, beta_b, size=10000)
# Calculate probability B > A
prob_b_better = (samples_b > samples_a).mean()
# Expected lift
expected_lift = (samples_b.mean() - samples_a.mean()) / samples_a.mean() * 100
print(f"๐ฎ Bayesian Results:")
print(f" P(B > A): {prob_b_better:.1%}")
print(f" Expected lift: {expected_lift:+.1f}%")
return prob_b_better, expected_lift
# ๐ช Try it out!
bayesian_test = BayesianABTest()
prob, lift = bayesian_test.analyze_bayesian(
successes_a=120, trials_a=1000,
successes_b=150, trials_b=1000
)
๐๏ธ Advanced Topic 2: Sequential Testing
For the brave data scientists:
# ๐ Sequential testing for early stopping
class SequentialABTest:
def __init__(self, alpha=0.05, power=0.80):
"""Initialize sequential test parameters ๐"""
self.alpha = alpha
self.power = power
self.results = []
def check_stopping_condition(self, conversions_a, visitors_a,
conversions_b, visitors_b):
"""Check if we can stop the test early ๐"""
# Calculate current statistics
rate_a = conversions_a / visitors_a
rate_b = conversions_b / visitors_b
# Pooled proportion
p_pool = (conversions_a + conversions_b) / (visitors_a + visitors_b)
# Standard error
se = np.sqrt(p_pool * (1 - p_pool) * (1/visitors_a + 1/visitors_b))
# Z-score
z_score = (rate_b - rate_a) / se if se > 0 else 0
# Sequential bounds (simplified O'Brien-Fleming)
information_fraction = min(visitors_a + visitors_b, 10000) / 10000
z_bound = stats.norm.ppf(1 - self.alpha/2) / np.sqrt(information_fraction)
# Decision
if abs(z_score) > z_bound:
return True, "Significant difference detected! ๐"
elif information_fraction >= 1:
return True, "Maximum sample size reached ๐"
else:
return False, f"Continue testing... ({information_fraction:.0%} complete)"
# Test sequential stopping
seq_test = SequentialABTest()
stop, message = seq_test.check_stopping_condition(50, 500, 70, 500)
print(f"๐ฆ {message}")
โ ๏ธ Common Pitfalls and Solutions
๐ฑ Pitfall 1: Peeking at Results Too Early
# โ Wrong way - checking results every day!
def bad_ab_test():
for day in range(30):
# Running test on partial data
p_value = calculate_p_value(data[:day])
if p_value < 0.05:
print(f"Significant on day {day}! Stopping test! ๐ฐ")
break # ๐ฅ This inflates false positive rate!
# โ
Correct way - wait for predetermined sample size!
def good_ab_test():
# Calculate required sample size upfront
required_n = calculate_sample_size(
baseline_rate=0.10,
minimum_detectable_effect=0.02,
power=0.80,
alpha=0.05
)
# Collect full sample
data = collect_data(n=required_n)
# Analyze once at the end
p_value = calculate_p_value(data)
print(f"โ
Test complete with {required_n} samples per group!")
๐คฏ Pitfall 2: Ignoring Multiple Comparisons
# โ Dangerous - testing many metrics without correction!
def multiple_metrics_wrong(data):
metrics = ['clicks', 'conversions', 'revenue', 'retention', 'engagement']
for metric in metrics:
p_value = test_metric(data, metric)
if p_value < 0.05:
print(f"{metric} is significant! ๐ฅ") # False discoveries likely!
# โ
Safe - apply Bonferroni correction!
def multiple_metrics_correct(data):
metrics = ['clicks', 'conversions', 'revenue', 'retention', 'engagement']
alpha = 0.05
corrected_alpha = alpha / len(metrics) # Bonferroni correction
significant_metrics = []
for metric in metrics:
p_value = test_metric(data, metric)
if p_value < corrected_alpha:
significant_metrics.append(metric)
print(f"โ
{metric} is significant (p={p_value:.4f} < {corrected_alpha:.4f})")
print(f"๐ก๏ธ Found {len(significant_metrics)} truly significant metrics")
๐ ๏ธ Best Practices
- ๐ฏ Define Success Metrics Upfront: Decide what youโre measuring before starting
- ๐ Calculate Sample Size: Use power analysis to determine how long to run
- ๐ก๏ธ Randomize Properly: Ensure truly random assignment to groups
- ๐จ Run Full Duration: Donโt stop early unless using sequential testing
- โจ Consider Practical Significance: Statistical significance โ business impact
๐งช Hands-On Exercise
๐ฏ Challenge: Build a Complete A/B Testing Framework
Create a comprehensive A/B testing system:
๐ Requirements:
- โ Sample size calculator with power analysis
- ๐ท๏ธ Support for different metric types (binary, continuous)
- ๐ค Confidence interval calculations
- ๐ Time-based analysis with daily tracking
- ๐จ Automated reporting with visualizations!
๐ Bonus Points:
- Add multi-armed bandit algorithms
- Implement Bayesian analysis option
- Create a web dashboard for results
๐ก Solution
๐ Click to see solution
# ๐ฏ Complete A/B Testing Framework!
import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
class ABTestingFramework:
def __init__(self, test_name):
self.test_name = test_name
self.data = []
self.start_date = None
self.metadata = {}
# ๐ Sample size calculation
def calculate_sample_size(self, baseline_rate, mde, alpha=0.05, power=0.80):
"""Calculate required sample size per group ๐งฎ"""
effect_size = mde / baseline_rate
# Using statsmodels approximation
z_alpha = stats.norm.ppf(1 - alpha/2)
z_beta = stats.norm.ppf(power)
p1 = baseline_rate
p2 = baseline_rate + mde
p_avg = (p1 + p2) / 2
n = (2 * p_avg * (1 - p_avg) * (z_alpha + z_beta)**2) / (p1 - p2)**2
print(f"๐ Sample Size Calculation:")
print(f" Baseline rate: {baseline_rate:.1%}")
print(f" Minimum detectable effect: {mde:.1%}")
print(f" Required n per group: {int(np.ceil(n)):,}")
return int(np.ceil(n))
# ๐ฒ Run experiment
def run_experiment(self, group_a_rate, group_b_rate, n_per_group, days=None):
"""Simulate or track real experiment ๐"""
self.start_date = datetime.now()
if days:
daily_n = n_per_group // days
for day in range(days):
date = self.start_date + timedelta(days=day)
# Group A
conversions_a = np.random.binomial(daily_n, group_a_rate)
self.data.append({
'date': date,
'group': 'A',
'visitors': daily_n,
'conversions': conversions_a
})
# Group B
conversions_b = np.random.binomial(daily_n, group_b_rate)
self.data.append({
'date': date,
'group': 'B',
'visitors': daily_n,
'conversions': conversions_b
})
print(f"โ
Experiment '{self.test_name}' data collected!")
# ๐ Analyze results
def analyze(self):
"""Comprehensive statistical analysis ๐งช"""
df = pd.DataFrame(self.data)
results = {}
for group in ['A', 'B']:
group_data = df[df['group'] == group]
total_visitors = group_data['visitors'].sum()
total_conversions = group_data['conversions'].sum()
conversion_rate = total_conversions / total_visitors
# Confidence interval
se = np.sqrt(conversion_rate * (1 - conversion_rate) / total_visitors)
ci_lower = conversion_rate - 1.96 * se
ci_upper = conversion_rate + 1.96 * se
results[group] = {
'visitors': total_visitors,
'conversions': total_conversions,
'rate': conversion_rate,
'ci_lower': ci_lower,
'ci_upper': ci_upper
}
# Statistical test
chi2, p_value = stats.chi2_contingency([
[results['A']['conversions'],
results['A']['visitors'] - results['A']['conversions']],
[results['B']['conversions'],
results['B']['visitors'] - results['B']['conversions']]
])[:2]
# Calculate lift
lift = (results['B']['rate'] - results['A']['rate']) / results['A']['rate'] * 100
# Generate report
print(f"\n๐ A/B Test Report: {self.test_name}")
print("=" * 60)
print(f"๐ต Control (A):")
print(f" Rate: {results['A']['rate']:.2%} "
f"[{results['A']['ci_lower']:.2%}, {results['A']['ci_upper']:.2%}]")
print(f"๐ข Treatment (B):")
print(f" Rate: {results['B']['rate']:.2%} "
f"[{results['B']['ci_lower']:.2%}, {results['B']['ci_upper']:.2%}]")
print(f"\n๐ Lift: {lift:+.1f}%")
print(f"๐ P-value: {p_value:.4f}")
print(f"๐ฏ Result: {'โ
Significant!' if p_value < 0.05 else 'โ Not significant'}")
return results, p_value, lift
# ๐จ Visualize results
def plot_results(self):
"""Create beautiful visualization dashboard ๐"""
df = pd.DataFrame(self.data)
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
# 1. Daily conversion rates
ax1 = axes[0, 0]
daily_rates = df.groupby(['date', 'group']).apply(
lambda x: x['conversions'].sum() / x['visitors'].sum()
).unstack()
daily_rates.plot(ax=ax1, marker='o')
ax1.set_title('Daily Conversion Rates ๐')
ax1.set_ylabel('Conversion Rate')
ax1.legend(['Group A', 'Group B'])
# 2. Cumulative conversions
ax2 = axes[0, 1]
for group in ['A', 'B']:
group_data = df[df['group'] == group].sort_values('date')
cumulative = group_data['conversions'].cumsum()
ax2.plot(group_data['date'], cumulative,
label=f'Group {group}', marker='o')
ax2.set_title('Cumulative Conversions ๐')
ax2.set_ylabel('Total Conversions')
ax2.legend()
# 3. Confidence intervals
ax3 = axes[1, 0]
results, _, _ = self.analyze()
groups = ['A', 'B']
rates = [results[g]['rate'] for g in groups]
ci_lower = [results[g]['ci_lower'] for g in groups]
ci_upper = [results[g]['ci_upper'] for g in groups]
x = np.arange(len(groups))
ax3.bar(x, rates, yerr=[np.array(rates) - np.array(ci_lower),
np.array(ci_upper) - np.array(rates)],
capsize=10, color=['skyblue', 'lightcoral'])
ax3.set_xticks(x)
ax3.set_xticklabels(groups)
ax3.set_title('Conversion Rates with 95% CI ๐ฏ')
ax3.set_ylabel('Conversion Rate')
# 4. Sample size over time
ax4 = axes[1, 1]
cumulative_visitors = df.groupby(['date', 'group'])['visitors'].sum().groupby('group').cumsum()
for group in ['A', 'B']:
group_cum = cumulative_visitors[group]
ax4.plot(group_cum.index.get_level_values(0),
group_cum.values, label=f'Group {group}')
ax4.set_title('Sample Size Over Time ๐')
ax4.set_ylabel('Cumulative Visitors')
ax4.legend()
plt.suptitle(f'A/B Test Dashboard: {self.test_name} ๐จ', fontsize=16)
plt.tight_layout()
plt.show()
# ๐ฎ Test the framework!
framework = ABTestingFramework("Homepage Redesign Test")
# Calculate sample size
n_required = framework.calculate_sample_size(
baseline_rate=0.10,
mde=0.02, # 2% absolute increase
power=0.80
)
# Run experiment
framework.run_experiment(
group_a_rate=0.10,
group_b_rate=0.12,
n_per_group=n_required,
days=14
)
# Analyze and visualize
results, p_value, lift = framework.analyze()
framework.plot_results()
๐ Key Takeaways
Youโve learned so much! Hereโs what you can now do:
- โ Design A/B tests with proper statistical rigor ๐ช
- โ Calculate sample sizes to ensure meaningful results ๐ก๏ธ
- โ Analyze results using appropriate statistical tests ๐ฏ
- โ Avoid common pitfalls like peeking and multiple comparisons ๐
- โ Build testing frameworks for data-driven decisions! ๐
Remember: A/B testing is your scientific approach to business decisions. Test, learn, and iterate! ๐ค
๐ค Next Steps
Congratulations! ๐ Youโve mastered A/B testing and statistical analysis!
Hereโs what to do next:
- ๐ป Practice with the framework above on your own data
- ๐๏ธ Build an A/B test for a real business problem
- ๐ Move on to our next tutorial: Time Series Analysis
- ๐ Share your testing insights with your team!
Remember: Every data scientist started with their first A/B test. Keep experimenting, keep learning, and most importantly, let the data guide you! ๐
Happy testing! ๐๐โจ